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Abstract. Social networks in communities, markets, and societies self-organise through the interactions of
many individuals. In this paper we use a well-known mechanism of social interactions — the balance of
sentiment in triadic relations — to describe the development of social networks. Our model contrasts with
many existing network models, in that people not only establish but also break up relations whilst the
network evolves. The procedure generates several interesting network features such as a variety of degree
distributions and degree correlations. The resulting network converges under certain conditions to a steady
critical state where temporal disruptions in triangles follow a power-law distribution.

PACS. 89.75.-k Complex systems – 87.23.Ge Dynamics of social systems

1 Introduction

Complex systems like organisations and organisms often
take the form of networks — sets of actors, cells or other
units tied together by edges. To explain the behaviour
of complex systems, network models have been developed
in many fields, for example, in physics, biology, opera-
tional research, economics, and sociology [1,2]. Most of
these models reproduce the observed properties of biolog-
ical and technical networks well but provide less accurate
descriptions of social networks. The reason for this could
be that people — unlike cells or particles — pursue in-
dividual goals that are mostly responsible for their social
contacts [3]. These goals affect the network but are also af-
fected by the network [4]. The goals as well as the network
are not static but co-evolve over time.

Of course, several general principles of network con-
struction could apply in the social as well as in the phys-
ical domain [1]. Take, for example, three fairly common
growth principles of networks: random attachment, pref-
erential attachment, and age-driven removal. Random at-
tachments might happen within groups of people with no
previous contacts at all (say, on a cruise). Preferential at-
tachment could be at work when people with a larger num-
ber of friends tend to acquire new friends more readily
(evoking the Matthew effect : “For to every one that hath
shall be given”). Age-driven removals take place as peo-
ple die or fall into oblivion (for example, forgotten High
School friends). These principles surely play a role in the
emergence of social networks; however, they only describe
wholesale phenomena, insensitive to individuals’ goals. For
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example, a person might choose to contact a less popular
person if his position in the social network makes it pref-
erential to do so.

How then can we extract a feasible construction princi-
ple out of the myriad of individual goals in social groups?
Sociology offers at least two findings: the locality principle
and structural balance. The locality principle describes the
fact that people mostly choose their social contacts based
on their local information of the network [3]. For example,
people might become acquainted with each other through
the introduction by a common friend. Using this argu-
ment, [5] simulated the evolution of social networks by
randomly linking up neighbouring nodes. Such an intro-
duction mechanism alone, however, does not take into ac-
count two other cornerstones of social life: the quality of
dyadic relations (Do two people like/dislike each other?)
and triadic relations (Do two people compete for the at-
tention, co-operation, etc. of the third person?). These
two aspects of social interactions are major drivers of so-
cial choice and at the heart of another classic in Sociology,
Structural Balance Theory.

Structural Balance Theory evolved from the work of [6]
and describes a social selection process in people’s minds.
According to this theory, people establish dyadic relations
that each side equivalently perceives as either positive or
negative. If three persons form a triadic relation they per-
ceive it as either “balanced” or “imbalanced”, depending
on the number of positive and negative relations in the
triangle (see Fig. 1).

A balanced triangle exists if either one or all of the
three relations are positive, that is, if “my friend’s friend
is my friend”, or “my enemy’s enemy is my friend”, or
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+  or - 

+  or - +  or - 

Fig. 1. Positive (+) and negative (-) sentiments in triangle
relations and the respective triangle type.

“my enemy’s friend is my enemy”, or “my friend’s enemy
is my enemy”. An imbalanced triangle, in contrast, occurs
in all other combinations, that is if either two or none
of the three relations are positive. Imbalanced triangles
provoke unease and force people towards more balanced
combinations that could involve a re-organisation of the
entire network [7]. These effects of triadic relations have
been confirmed in several empirical studies [8,9]. It, thus,
seems reasonable to use the balance of sentiment in triadic
relations as a construction principle for social networks.

In the following we introduce a network model that is
based on the insights of balance theory as well as the local-
ity principle. To model the network growth accordingly, we
sequentially randomly attach positive and negative edges
to a given set of nodes. For each node, we sequentially
keep track of the number of unbalanced triangles. Once
a node reaches a certain threshold of unbalanced senti-
ments, we remove its links at random one after the other
until the threshold is not exceeded. This process in turn
might cause other nodes to become too imbalanced so that
the re-balancing process cascades until all affected nodes
are sufficiently balanced again.

We first show how to model such a network’s evolution
and then analyse how the evolutionary process converges
towards an unstable equilibrium that may be a state
of self-organised criticality. The concept of self-organised
criticality, first outlined by [10] in the “sand pile” model,
increasingly stimulates research into the description and
construction of networks (see, among others, [11–15]). For
example, [12] use a network mechanism to describe self-
organised criticality in the sun’s magnetic field lines and
the resulting size distribution of solar flares. [15] show how
a random network evolves into a state of self-organised
criticality upon introducing a rewiring procedure that de-
pends on each link’s age. Although these models make
reference to the original sand pile idea, they usually ap-
ply different definitions of self-organised criticality in net-
works. We here define a network’s self-organised criticality
as a medium-term statistical steady state where the av-
erage number of added and removed links (or triangles)
per time step is equal, and the distribution of triangle re-
movals in a given time unit is scale-invariant [16,17]. The
properties of networks in such a state will be reported
later in the article.

Fig. 2. Probabilities for positive links and balanced triangles
in the network for different values of α. If α = 0, both proba-
bilities are 50%.

2 Model of network evolution

Consider a set of n vertices (that is, persons) that are
subsequently linked with each other. At each time step t
a single symmetric positive or negative link is established
at random between two directly unconnected vertices. The
likelihood of a link’s quality (positive or negative) depends
on a friendliness index −1 � α � 1 so that the probability
of a positive link is α+1

2 . Accordingly (see Fig. 1), the
probability of a randomly chosen completed triangle being
balanced (respectively unbalanced) is

PB =
(

3
3

) (
α + 1

2

)3
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) (
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;

PU = 1 − α3 + 1
2

=
1 − α3

2
. (1)

If we have, for example, α = 0.4, then 70% of newly in-
troduced links are positive and 1

2

(
0.43 + 1

)
= 53.2% of

triangles are balanced (see Fig. 2). In general, the fraction
of balanced triangles in the network shifts only slightly as
the friendliness index varies between −0.5 � α � 0.5. It
is only for extreme values for α that the mix of triangles
changes dramatically.

Now consider a uniformly distributed threshold param-
eter −1 � β � 1 that indicates the quantity of imbalanced
triangles that is just tolerated by an agent. We compare
β with a vertex i’s balance index ϕi =

(
�+−�−
�++�−

)
i
, where

�+ and �− are the number of balanced and imbalanced
triangles running through the vertex. Hence, a vertex i
stays inert as long as β � ϕi, and becomes unbalanced
otherwise. After a new link is added to the network, all ϕi

of the network are calculated in a random sequence. If a
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Fig. 3. Typical growth patterns of triangles Ξt and links Et

in dense, semi-sparse, and sparse networks (n = 60) during the
early time steps of the evolution.

vertex i falls below the threshold β, one of its links is ran-
domly removed and its balance index ϕi is recalculated.
If this vertex is still unbalanced the procedure continues
until it is balanced again. Now all remaining ϕi are again
determined in the same sequence as before, and the proce-
dure goes on for each unbalanced vertex until all vertices
are sufficiently balanced again. Only then a new link is
attached to the network.

It could be argued that an agent does not randomly
remove one of his links but rather tries to abandon the
link that adds most to the unbalanced condition. To do
this, however, the agent has to closely keep track of each
link’s triangle contributions, which seems to be a daunt-
ing, if not impossible task for networks of any complex-
ity. Hence, random link removals are quite plausible, es-
pecially if they are interpreted as an actor’s attempt to
become more restrained in general.

The network’s evolution proceeds either until the net-
work contains the maximum number of potential links
n(n − 1)/2 [18], or until a predetermined number of time
steps is reached. For each time step, we measure several
network properties, the number of link removals as well as
number and type of triangle removals.

3 Settings for the network’s evolution

Three types of networks occur in the simulations: dense,
semi-sparse, and sparse networks (see Fig. 3). In dense
networks the number of triangles Ξt and links Et at time
step t quickly grows, interrupted by little cascades of
break-ups, until the network becomes complete at or soon
after t = n(n − 1)/2 is reached. Sparse networks hardly
have any triangles and accumulate only a relative small

Fig. 4. Average number of links Ē for various combinations of
α and β; each line represents a different friendliness index α =
{−1.0;−0.8;−0.4; 0.0; 0.4; 0.8; 1.0}. Data are averaged results
over 1600 < t � 1700 and 4 simulations. The three highlighted
combinations β = {0.1; 0.4; 0.7} lie on the line of α = 0 and
are analysed in more detail later in the paper.

number of links up to a certain level around which both
Ξt and Et fluctuate. Semi-sparse networks have a simi-
lar growth pattern to sparse networks; however, the level
around which their number of triangles and links fluctuate
is significantly higher than in sparse networks.

The type of network depends on both the friendliness
index and the (assumed) uniform balance threshold in the
network. To investigate the “space of networks” we vary
the friendliness index and the balance threshold for repre-
sentative values. For each combination, the network size is
n = 60 and the duration of the evolution is tmax = 1700,
chosen to be well before the time t = 60 × 59/2 = 1770
when the network could become complete. We measure
the average number of links between 1600 < t � tmax

and repeat this procedure 4 times to calculate the average
number of edges Ē over all four network evolutions (see
Fig. 4).

For each friendliness index α we obtain a different
function between the balance threshold and the average
number of links. For α = 1.0, the network evolves to the
maximum number of 1700 links regardless of the balance
threshold as a new link is added at each time step and no
break-ups occur. This case is thus equivalent to the classi-
cal random graph model (also called ER-model) [19]. The
same ER-network is in place for β = −1, when the nodes
tolerate an unlimited number of negative triads.

If α = −1.0, the network contains 1700 links when
β = −1, but only about 145 links for most other balance
thresholds. A special combination is α = −1.0 and β =
1 where no triangles exist at all and the network only
features tree graphs. For all other values of α, we find
similar functions between β and Ē, each featuring dense,
semi-sparse, and sparse networks.

If β is sufficiently low, the evolved network is dense and
contains only slightly less than 1700 links. As β becomes
more positive, the number of links strongly decreases and
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Fig. 5. The average number of links Ē for β = {0.05, 0.10,
..., 0.95, 1} and α = 0 standardised by Ē(β = 1). The num-
ber of links were averaged between 1000 � t � n(n − 1)/2
and, respectively, over 5 runs for the three network sizes
n = {60, 80, 100}. The function Ē(β)/Ē(β = 1) is almost iden-
tical for the three cases. At β ≈ 0.65, the function becomes
significantly larger than 1 and strongly increase as β tends to
zero. Inset: the number of links Ē(β) for the same set-up. The
slope of Ē(β) seems to be independent of n for sufficiently
large β.

the networks become semi-sparse. Beyond a certain degree
of intolerance (balance threshold), the number of links is
very low and decreases only slightly so that only sparse
networks evolve.

We can check for network size effects by running sim-
ulations similar to those conducted above for parameter
combinations with α = 0, β = {0.05, 0.10, ..., 0.95, 1}, and
n = {60, 80, 100}. The insert of Figure 5 displays Ē cal-
culated as the mean number of links between 1000 � t �
n (n − 1)/2, averaged over 5 runs. The average link num-
ber grows as the network size increases, however, the slope
of Ē as a function of β seems to be independent of the
network size for sufficiently high threshold values (here,
β > 0.05). We can substantiate this claim if we divide
Ē by Ē(β = 1), as shown in Figure 5. Of course, if the
threshold level β is sufficiently low (here, β < 0.05), the
slope of Ē(β) becomes steeper the larger is the network.

To analyse what drives the boundaries between the
three types of networks, let us first take into account two
measures: the probability for a balanced triangle PB =
1+α3

2 and the minimum proportion of balanced triangles
required by the network’s members 1+β

2 to remain inert.
The boundary between dense and semi-sparse networks
appears to take place if the probability for a balanced
triangle is lower than the required minimum proportion
of balanced triangles:

PB <
β + 1

2
⇒ 1 + α3

2
<

1 + β

2
⇒ α3 < β. (2)

Otherwise the probability U that a node retains an un-
balanced triangle at time step t quickly increases from

Fig. 6. The probability G(α = 0; β) that a randomly chosen
set of y triangles ever created throughout the evolution con-
tains only balanced triangles. For sufficiently high values of β
(here, about β = 0.75), y increases very fast and converges to
infinity for β = 1. Consequently, G(α; β) is approximately zero
for values β > 0.75 (and exactly zero for β = 1). As a result,
the number of triangles and links in the network falls strongly
at around β = 0.75 and stays at about the same low level
for higher values of β. This cut-off value increases for larger
network sizes n and longer durations of the evolution, tmax.

U = PU = 1−α3

2 at t = 0 to U = 1 so that the network
becomes dense.

If α3 < β, the probability U is still a function of PU

but also depends on the required minimum proportion of
balanced triangles β+1

2 . The latter translates into a re-
quired number, y, of balanced triangles that a node has
to accumulate before it retains its next unbalanced trian-
gle (unless β = −1, so that all triangles are tolerated). For
this number y, it must hold that

y − 1
y

=
β + 1

2
⇔ y =

2
1 − β

. (3)

We then can say that the probability U also depends on
the function G(α; β)

G(α; β) =
(

1 + α3

2

)y

=
(

1 + α3

2

)2/(1−β)

, (4)

which is the probability that a randomly chosen set of
y triangles created at any time throughout the evolution,
contains only balanced triangles. If G(α; β) is significantly
above zero, the average number of edges Ē in the net-
work strongly increases and the network is likely to be-
come semi-sparse. In Figure 6, we plot G for α = 0 and y
against different values of β.

Apparently, G decreases steadily as β grows. At a cer-
tain value of β (for α = 0, at aboutβ = 0.75), the prob-
ability G is close to zero. This follows from the fact that
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Fig. 7. The fraction of balanced triangles ξB for different val-
ues β and for α = {−0.8; 0; 0.4}. For values α3 � β, the frac-
tion of balanced triangles ξB is close to 1

2

(
1 + α3

)
. Beyond

that point, ξB steadily increases until it is close to one. The
usual examples β = {0.1; 0.4; 0.7} are for α = 0.

y increases dramatically beyond β = 0.75, and we find
sparse networks.

However, the exact boundary condition between sparse
and semi-sparse networks not only depends on G but also
on the network size n, the duration tmax of the network’s
evolution, and other random effects during the evolution.

To gain a better idea of the three types of networks, we
measure the number of balanced and unbalanced triangles
in the network at each time step t (Ξ+

t and Ξ−
t ), and cal-

culate the average proportion of balanced triangles ξB =
1

tmax−tmin

∑
t

Ξ+
t

Ξ+
t +Ξ−

t

for a given duration tmin < t � tmax.

The graph in Figure 7 shows ξB for α = {−0.8; 0; 0.4}
(simulated for n = 60 and averaged over 100 time steps
between 1600 < t � 1700 and over 30 simulations) against
different values of β.

For lower values of β, the fraction of unbalanced tri-
angles is close to (or exactly, for β = −1) 1

2

(
1 + α3

)
as

long as α3 � β. In this phase almost all unbalanced trian-
gles are accepted after a sufficient number of time steps so
that ξB ≈ PB . If α3 < β, the proportion of balanced tri-
angles goes up as β increases, and approaches ξB = 1 for
values of β = 0.4 to β = 0.6. For example, the three cases
β = {0.1; 0.4; 0.7} for α = 0 have a fraction of balanced
triangles of about 65%, 90%, and 100%. Interestingly, the
fraction of balanced triangles in semi-sparse networks are
higher for cases of lower values of α. Moreover, it becomes
clear that a proportion of balanced triangles ξB ≈ 1 cor-
responds to sparse networks.

The fact that a very high fraction of balanced triangles
indicates a sparse network allows us to use it as an or-
der parameter for identifying the boundary between semi-
sparse and sparse networks.

Let us define the margin ε = 1 − ξB ≈ 0 by which the
proportion of balanced triangles in the network is lower
than 1. This margin is driven by G(α; β), the network size
n, the duration of the evolution tmax and other random

effects during the network’s evolution. If we set everything
else constant, we can define a sparse network in terms of
ε and G(α; β) where the following holds

G(α; β) � ε ⇔ β + 1
2

� log (ε)
log

(
1+α3

2

) ⇔

β � 1 −
2 log

(
1+α3

2

)
log (ε)

. (5)

All networks whose fraction of balanced triangles is ξB �
1− ε are thus defined as sparse. This allows us to indicate
the boundary condition between semi-sparse and sparse
networks for different combinations of α and β. To this
end, we simulate networks with n = 100 and measure the
fraction of balanced triangles for 10 000 < t � 30 000.
If a network becomes complete during this simulation, it
is classified as dense. Accordingly, a sparse network is a
non-complete network whose fraction of unbalanced tri-
angles falls below a given level ε. This level increases as
the evolution’s duration increases. For the example’s du-
ration tmax = 30 000, the sparse networks appear to occur
for approximately ε = 0.03. Thus non-complete networks
with ξB < 0.97 are labelled as semi-sparse. In Figure 8a,
we give an overview of this classification for combinations
of α = {−1,−0.8, ..., 0.8, 1} and {−1,−0.8, ..., 0.8, 1}. Ap-
parently, the area of semi-sparse networks lies between
the sparse and dense networks in the α−β-space. We can
now compare the simulation results with the two bound-
ary conditions stated in (2) and (5) (see Fig. 8b). Using
ε = 0.03 in (5), we can closely reproduce the shape and
location of the boundary between sparse and semi-sparse
networks. The example networks for α = 0, β = {0.1; 0.4}
are semi-sparse, whilst the network for α = 0, β = 0.7
is sparse. We also show the boundary between dense and
semi-sparse networks as given by (2). At tmax = 30 000,
all networks with α3 > β are complete whilst most
other networks have fewer links. However, there are also
complete networks for α3 � β (for example, in case of
α = 0.8, β = 0.8). So obviously, the boundary conditions
are not entirely fixed. As we will see in the next section,
the links and triangles of networks in and around the semi-
sparse area fluctuate considerably during the evolution.
This can result in sparse networks becoming semi-sparse
and semi-sparse networks becoming dense.

4 Simulating the network’s evolution

The network’s evolution is interesting in two respects:
first, the number of break-ups that occur during each
time step of its evolution, and second, the correspond-
ing development of network traits. To describe a network,
we calculate the following properties after each time step
t: Et, Ξ+

t and Ξ−
t , the proportion of balanced triangles

ξB,t = Ξ+
t

Ξ+
t +Ξ−

t

, the number of newly formed triangles
dΞt at the beginning of time step t, the break-ups of the
number of links and triangles (∂Et = |Et + 1 − Et−1| and
∂Ξt = |Ξt + dΞt − Ξt−1|), the degree distribution pt(k),
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Fig. 8. (a) Schematic location of sparse, semi-sparse, and dense networks in the α− β-space. The networks are of size n = 100
and are analysed for the duration of 10 000 < t � 30 000. Completed networks are classified as dense. Non-complete networks
whose share of balance triangles is ξB > 1 − ε are classified as sparse, while all other non-complete networks are labelled as

semi-sparse. (b) The boundary conditions β = α3 and β = 1−2 log
(

1+α3

2

)
/log (ε) with ε = 0.03 almost completely envelope the

area of semi-sparse networks found in the simulation, suggesting that both conditions are major drivers of the change between
network types. Some completed networks can occur below the upper boundary conditions, which is discussed below. For our
standard examples with α = 0, we expect a sparse network for β = 0.7 and semi-sparse networks for β = {0.1, 0.4}.

Fig. 9. The evolution of Et, Ξt, and Ξ+
t during 10 000 time

steps for α = 0; β = 0.1. The number of links is in a state of
steady criticality after about 1200 time steps, while the num-
ber of triangles and positive triangles reaches the same state
some time later. When the network becomes steady critical,
the changes in triangles and links can be considerable (see, for
example, the period shortly before t = 6500.

and the degree correlation rt. The degree distribution indi-
cates the fraction p(k) of vertices with k links in a network.
A positive degree correlation r represents the tendency of
network nodes to be connected to nodes of similar degree.
It is defined as the Pearson correlation coefficient of de-
grees at either end of a link and assumes values between
−1 � r � 1 [20].

A network’s evolution always passes through a start-
ing or “build up” phase, as shown in Figure 9. The plot
depicts the number of links, triangles, and positive trian-
gles during the evolution of a network with α = 0 and
β = 0.1. After the start-up phase is finished (here, after

Fig. 10. The evolution of ξB,t and rt during 10 000 time steps
for α = 0; β = 0.1. The fraction of positive triangles ξB,t de-
crease from 1 to a stationary value (here, about 0.6). The de-
gree correlation first assumes negative values before turning
positive and fluctuating around a positive value.

about 1600 time steps), the number of links starts fluctu-
ating around a mean value (in this setting, at about 33% of
the maximum number of potential links 60 ·59/2 = 1770).
The fluctuating (or “stationary”) state begins earlier the
higher is the balance threshold β. However, its start can
be difficult to spot, especially for the number of trian-
gles. As observable in Figure 9, the number of triangles
approaches the fluctuating state much later and is more
volatile than the number of links. The swings can be mas-
sive even for the short period of 10 000 time steps. In our
example, there is a decrease of about 30% of triangles
and of about 15% of links between time steps 6467 and
6480. The positive triangles’ trajectory mostly moves in
parallel to the development of all triangles. However, the
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Fig. 11. The relative frequency distribution of (a) the number of break-ups of triangles ∂Ξt and (b) the number of break-ups of
links ∂Et in the network during t =10 000 until t =100 000 for β = {0.1; 0.4; 0.7}. The break-up distribution of triangles follow
a power-law for β = 0.1 and β = 0.4 and an exponential distribution for β = 0.7. The break-up distribution for links seem to
follow exponential functions but can also be fitted to power-law functions. Simulations with much larger networks are required
to confirm this judgement. The regressions become less accurate for highly infrequent data points due to the finite size of the
network and of the network’s evolution.

proportion of positive triangles decreases until it converges
to about 60% of total possible (Fig. 10).

The reason for this decrease is that, as the evolution
of the network proceeds, more and more links and tri-
angles are located with nodes that by chance have en-
joyed a stream of predominantly balanced triangles. These
“super-balanced” nodes act as a stabilising “buffer”, in-
creasing the network’s capacity to absorb negative trian-
gles.

To determine the distribution of break-ups per time
step, we need to strike a balance between the network’s
size n and the duration tmax of the network evolution.
While the statistic of break-ups clearly requires large net-
works to be meaningful, the running times usually become
unacceptable for very large networks. However, we can
partly capture the behaviour of large networks by extend-
ing the duration of the evolution (for example, to collect
more extreme outliers of break-up sizes). For these rea-
sons we ran the network evolutions for 100 000 time steps
with a relatively small network size n = 60. We collect
data for t > 10 000 in order to measure the break-ups
only during the fluctuating state. As before, we choose
the three standard combinations with balance thresholds
of β = {0.1; 0.4; 0.7} and a friendliness index of α = 0.

Figures 11a and 11b depict respectively the relative
frequency of break-ups of triangles and links during a time
step t. The break-up distribution for triangles can be fit-
ted to a power-law for semi-dense networks (here: β = 0.1
and β = 0.4). For example, the power-law exponent of
the break-up distribution for β = 0.1 is about 1.3. As
β increases, the power-law exponent becomes larger, that
is, the power-law distributions become steeper. For sparse
networks (here: β = 0.7), the distribution is exponential,

as shown in the semi-log plot of the insert in 11a. The
break-up distributions for links can be fitted to an expo-
nential function [21] whose mean is (very close to) 1 as
long as the network is non-dense (here, for all three cases
β = {0.1; 0.4; 0.7}). In other words, the creation of links
equals the average destruction in non-complete networks
with α3 � β.

According to our definition, this indicates that semi-
sparse networks approach a state of self-organised criti-
cality. Simulations of other settings show that break-ups
in dense networks hardly occur while break-ups in sparse
networks are frequent but of limited size. The reason for
the latter is that unbalanced triangles beyond the lower
boundary are almost always torn apart upon their cre-
ation, which leaves no room for the creation of network
structures large enough to provoke break-ups at signifi-
cant scale. So it is only in semi-sparse networks, we find
that the number of triangle break-ups follows a power-law.
This condition, of course, only holds if the average number
of added and removed links is in equilibrium.

The degree correlation and degree distribution fluctu-
ate throughout the evolutionary process and each is quite
different in the “start up” phase and the stationary phase.
Therefore, we take averages over a period of time steps
that surely take place in the stationary phase and mark
mean values by a bar over the respective symbol: the av-
erage degree correlation is r̄ = 1

tmax−tmin

∑
t rt and the

average degree probability is p̄(k) = 1
tmax−tmin

∑
t pt(k).

Proceeding in this way, we can compare values for differ-
ent combinations of α and β.

The degree correlation r̄ assumes positive values in
semi-sparse networks (see Fig. 12, using settings as in
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Fig. 12. Average degree correlation r̄ for different values of β
(settings as in Fig. 7). Until the boundary condition at α3 = β,
the degree correlation is slightly below zero (but converges to
zero for larger networks as in the classical random graph).
Between the first and second phase boundary condition, the
network displays self-organised criticality and the degree cor-
relation increases until about r̄ = 0.1 (and beyond 0.25 if the
evolution lasts longer). Beyond the lower boundary condition,
the degree correlation is slightly negative. The example com-
binations α = 0, β = {0.1; 0.4} have a positive r̄, while the
combination α = 0, β = 0.7 leads to a network with a nega-
tive r̄.

Fig. 7). The positive degree correlation is due to the fact
that links and triangles gravitate to the “super-balanced”
nodes. These nodes are less likely to remove links, and
thus, on average, tend to be linked to each other,
resulting in a positive degree correlation rt (“hard core
effect”). The “hard core effect” increases as the bal-
ance threshold increases but disappears after the lower
boundary condition is encountered. The reason for this
on-off phenomenon of degree correlations is that an in-
creasing balance threshold, on the one hand, makes the
group of “super-balanced” nodes more exclusive and fos-
ters links to and between them. On the other hand, it in-
creases the number of nodes that frequently break up links
and “re-randomise” the network. Both counter-steering
trends determine the size of the “hard core”. If the “re-
randomisation” dominates, as in sparse networks, the de-
gree correlation becomes slightly negative. In case of com-
pleted networks, the degree correlation is very close to
zero, but might slightly diverge from zero if the network
size is relatively small or if a sufficient number of break-
ups have taken place before the network is completed.

The balance threshold β not only has a strong impact
on the degree correlation but also on the degree distribu-
tion p̄(k). The inset of Figure 13 shows the degree dis-
tribution p̄(k) for the three cases of β = {0.1; 0.4; 0.7}
with a network size n = 60. Again, the “hard core effect”
is at work: if the balance threshold increases, the “super-
balanced” nodes gain additional links during the network’s
evolution, which leads to more varied degrees and thicker
right tails of the distribution. At a certain point, the “hard
core effect” becomes smaller as the “re-randomisation” in-

Fig. 13. Degree distribution p̄(k) (averaged over time steps
between t = 12 000 and t = 20 000) for β = {0.1; 0.4; 0.7}
and a network size of n = 200. Inset: degree distribution p̄(k)
(averaged over time steps between t = 3000 and t = 10 000)
for β = {0.1; 0.4; 0.7} and a network size n = 60.

tensifies. If the balance threshold is high enough (β = 0.7
in the example), the degree distribution seems to converge
to a Poisson distribution, as in a pure-random graph.

The average degree moves in parallel to the number
of links as shown and reaches a stationary value after an
initial build-up. This stationary value decreases for higher
balance thresholds (see Fig. 4). All degree distributions
have their mode at rather small degrees and are skewed
to the right. For some combinations, (see for example,
β = 0.1, n = 60) the degree distribution also displays
a local maximum for highly connected nodes. This, how-
ever, might again be a finite-size effect as it disappears
for a network with n = 200 (see Fig. 13). The simulations
with networks of size n = 200 also generate much higher
average and maximum degrees and result in more skewed
degree distributions than in the case of n = 60. These
variations of the degree distribution closely affect other
characteristics of networks, such as the degree variance or
the epidemic threshold of the network [2].

We find that the generated degree distributions p̄(k)
mimic those in the real world strikingly well for suitable
values of the balance threshold [22]. For example, compare
the degree distribution for β = 0.1 and for β = 0.4 in
Figure 13 with respectively the number of collaborators of
movie actors and interlocking directorships (both reported
in [22]).

5 Conclusions

The network model described above is based upon a plau-
sible sociological concept — balance theory — and repro-
duces several characteristics of known social networks, no-
tably a positive degree correlation and a variety of degree
distributions. The model shows that networks evolve over
time, and that their characteristic features require differ-
ent periods of time until they reach their medium-term
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stationary values. This, and the existence of different bal-
ance thresholds between groups, organisations, and pop-
ulations might explain the observed variety of real world
degree correlations and degree distributions. The reason-
able fit with some empirical network properties can also
be interpreted as a validation (but certainly not a proof)
of balance theory. This line of reasoning offers several new
avenues for empirical research. For example, it would be
interesting to determine the average balance threshold in
different contexts (nations, cultures, metropolitan vs. ru-
ral areas) and then verify the respective network proper-
ties like the degree correlation.

The model could be extended in many ways. For in-
stance, it would be interesting to check out other values
of α in order to test variations of Structural Balance The-
ory or to incorporate exogenous factors that influence the
quality of links. Another extension could be to assign a
distribution of balance thresholds across the nodes. More-
over, alternative network traits could be investigated and
checked for their realism, especially on much larger net-
works. Finally, the model suggests that people constantly
redefine their social contacts. Thus, the rate of social ad-
justments within the network (rebalancing sentiments by
removing social links) is much faster than the rate at which
new contacts are established. This contrasts with many
other models of network evolution where new edges are
added to the network at quicker rates than edges are re-
moved (the usual logic being that links stay in the net-
work for a person’s lifetime) [5]. Interestingly, the gravity
of social confrontations and revolutions (as, for example,
measured by the number of workers involved in strikes [23]
or by the number of victims in terrorists attacks [24]) seem
to follow a power-law as well. If we therefore interpret the
size of social upheavals as the change in the number of tri-
angles of the underlying network, we can use the model as
a conceptual bridge between the population’s sentiments
(tolerance), the evolution of its social network, and the
likelihood of social disruptions.

We thank G. Brightwell, J. Howard, P. Sozou and two anony-
mous referees for helpful comments.
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